
Advanced Graphics

Beziers, B-splines, and
NURBS

Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd

Bezier splines, B-Splines, and NURBS

Shiny, but reflections are warped Shiny, and reflections are perfect

Expensive products are sleek and smooth.
→ Expensive products are C2 continuous.

History

● Continuity (smooth curves) can
be essential to the perception of
quality.

● The automotive industry wanted
to design cars which were
aerodynamic, but also visibly of
high quality.

● Bezier (Renault) and de
Casteljau (Citroen) invented
Bezier curves in the 1960s. de
Boor (GM) generalized them to
B-splines.

History
The term spline comes from
the shipbuilding industry: long,
thin strips of wood or metal
would be bent and held in
place by heavy ‘ducks’, lead
weights which acted as control
points of the curve.
Wooden splines can be
described by Cn-continuous
Hermite polynomials which
interpolate n+1 control points.

Top: Fig 3, P.7, Bray and Spectre, Planking and Fastening, Wooden Boat Pub (1996)

Bottom: http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm

http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm

Beziers—a quick review
● A Bezier cubic is a function P(t) defined

by four control points:
● P1 and P4 are the endpoints of the curve
● P2 and P3 define the other two corners of the

bounding polygon.
● The curve fits entirely within the convex

hull of P1...P4.
● A degree-d Bezier is infinitely continuous

throughout its interior. However, when
joining two Beziers, careful placement of
the control points is required to ensure
continuity.

P1

P2 P3

P4

Cubic: P(t) = (1-t)3P1 + 3t(1-t)2P2 + 3t2(1-t)P3 + t3P4

Beziers

Cubics are just one example of Bezier splines:
● Linear: P(t) = (1-t)P1 + tP2

● Quadratic: P(t) = (1-t)2P1 + 2t(1-t)P2 + t2P3

● Cubic: P(t) = (1-t)3P1 + 3t(1-t)2P2 + 3t2(1-t)P3 + t3P4

...

General:
“n choose i” = n! / i!(n-i)!

Beziers

● You can describe Beziers as nested linear interpolations:
● The linear Bezier is a linear interpolation between two points:

P(t) = (1-t) (P1) + (t) (P2)
● The quadratic Bezier is a linear interpolation between two lines:

P(t) = (1-t) ((1-t)P1+tP2) + (t) ((1-t)P2+tP3)

● The cubic is a linear interpolation between linear interpolations between
linear interpolations… etc.

● Another way to see Beziers is as a weighted average
between the control points.

P1

P2

P3
(1-t)P1+tP2

(1-t)P2+tP3

P(t)

Bernstein polynomials

P(t) = (1-t)3P1 + 3t(1-t)2P2 + 3t2(1-t)P3 + t3P4

● The four control functions are the four Bernstein
polynomials for n=3.

• General form:
•

• Bernstein polynomials in 0 ≤ t ≤ 1 always sum to 1:

Joining Bezier splines

● To join two Bezier splines with C0
continuity, set P4=Q1.

● To join two Bezier splines with C1
continuity, require C0 and make the tangent
vectors equal: set P4=Q1 and P4-P3=Q2-Q1.

P4
Q1

Q2

P3

What if we want to chain Beziers together?

Consider a chain of splines with
many control points…

P = {P0, P1, P2, P3}
Q = {Q0, Q1, Q2, Q3}
R = {R0, R1, R2, R3}

…with C1 continuity…
P3=Q0, P2-P3=Q0-Q1
Q3=R0, Q2-Q3=R0-R1

We can parameterize this chain
over t by saying that instead of
going from 0 to 1, t moves
smoothly through the intervals
[0,1,2,3]

The curve C(t) would be:
 C(t) = P(t) • ((0 ≤ t <1) ? 1 : 0) +

Q(t-1) • ((1 ≤ t <2) ? 1 : 0) +
R(t-2) • ((2 ≤ t <3) ? 1 : 0)

[0,1,2,3] is a type of knot vector.
0, 1, 2, and 3 are the knots.

P4

Q1

Q2

P3

Q4

Q3

R2

R1

NURBS

● NURBS (“Non-Uniform Rational B-
Splines”) are a generalization of Beziers.
● NU: Non-Uniform. The knots in the knot vector

are not required to be uniformly spaced.
● R: Rational. The spline may be defined by

rational polynomials (homogeneous coordinates.)
● BS: B-Spline. A generalization of Bezier splines

with controllable degree.

B-Splines

● A Bezier cubic is a polynomial of degree three: it
must have four control points, it must begin at
the first and end at the fourth, and it assumes that
all four control points are equally important.

● B-spline curves are a piecewise parameterization
of a series of splines, that supports an arbitrary
number of control points and lets you specify the
degree of the polynomial which interpolates
them.

B-Splines
We’ll build our definition of a B-spline from:

● d, the degree of the curve
● k = d+1, called the parameter of the curve
● {P1…Pn}, a list of n control points
● [t1,…,tk+n], a knot vector of (k+n) parameter values

● d = k-1 is the degree of the curve, so k is the number of control
points which influence a single interval.
● Ex: a cubic (d=3) has four control points (k=4).

● There are k+n knots, and ti ≤ ti+1 for all ti.
● Each B-spline is C(k-2) continuous: continuity is degree minus one,

so a k=3 curve has d=2 and is C1.

B-Splines

● The equation for a B-spline curve is

● Ni,k(t) is the basis function of control point Pi for
parameter k. Ni,k(t) is defined recursively:

B-Splines

N1,1(t) N2,1(t) N3,1(t) N4,1(t) …

N1,2(t) N2,2(t) N3,2(t)

N1,3(t) N2,3(t)

N1,4(t)

…

…

…

t1 t2 t3 t4 t5 …

B-Splines

N5,1(t)=1, 4 ≤ t < 5

N3,1(t)=1, 2 ≤ t < 3

N1,1(t)=1, 0 ≤ t < 1

N4,1(t)=1, 3 ≤ t < 4

N2,1(t)=1, 1 ≤ t < 2

Knot vector = {0,1,2,3,4,5}, k = 1 → d = 0 (degree = zero)

N1,1(t) N2,1(t) N3,1(t) N4,1(t)
0 1 1 2 2 3 3 4

N5,1(t)
54

t1 = 0.0
t2 = 1.0
t3 = 2.0
t4 = 3.0
t5 = 4.0
t6 = 5.0

N1,2(t) N2,2(t) N3,2(t) N4,2(t)

Knot vector = {0,1,2,3,4,5}, k = 2 → d = 1 (degree = one)

B-Splines

N1,3(t) N2,3(t) N3,3(t)

Knot vector = {0,1,2,3,4,5}, k = 3 → d = 2 (degree = two)

B-Splines

N1,2(t) N2,2(t) N3,2(t) N4,2(t)

Basis functions really sum to one (k=2)

=
The sum of
the four basis
functions is
fully defined
(sums to one)
between
t2 (t=1.0) and
t5 (t=4.0).

N1,3(t) N2,3(t) N3,3(t)

Basis functions really sum to one (k=3)

+ +

=

The sum of
the three
functions is
fully defined
(sums to one)
between
t3 (t=2.0) and
t4 (t=3.0).

B-Splines

At k=2 the function is piecewise
linear, depends on P1,P2,P3,P4, and is
fully defined on [t2, t5).

Each parameter-k basis function depends on k+1 knot values; Ni,k depends on ti
through ti+k, inclusive. So six knots → five discontinuous functions → four piecewise
linear interpolations → three quadratics, interpolating three control points. n=3
control points, d=2 degree, k=3 parameter, n+k=6 knots.

At k=3 the function is piecewise
quadratic, depends on P1,P2,P3, and is
fully defined on [t3, t4).

Knot vector = {0,1,2,3,4,5}

Non-Uniform B-Splines
● The knot vector {0,1,2,3,4,5} is uniform:

ti+1-ti = ti+2-ti+1 ∀ti. ● Varying the size of an interval changes the parametric-
space distribution of the weights assigned to the control
functions.

● Repeating a knot value reduces the continuity of the
curve in the affected span by one degree.

● Repeating a knot k times will lead to a control function
being influenced only by that knot value; the spline will
pass through the corresponding control point with C0
continuity.

Open vs Closed

● A knot vector which repeats its first and last knot
values k times is called open, otherwise closed.
● Repeating the knots k times is the only way to

force the curve to pass through the first or last
control point.

● Without this, the functions N1,k and Nn,k which
weight P1 and Pn would still be ‘ramping up’
and not yet equal to one at the first and last ti.

Open vs Closed

● Two examples you may recognize:
● k=3, n=3 control points, knots={0,0,0,1,1,1}
● k=4, n=4 control points, knots={0,0,0,0,1,1,1,1}

Demo

http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html

Non-Uniform Rational B-Splines

● Repeating knot values is a clumsy way to
control the curve’s proximity to the control
point.
● We want to be able to slide the curve nearer or

farther without losing continuity or introducing
new control points.

● The solution: homogeneous coordinates.
● Associate a ‘weight’ with each control point: ωi.

Non-Uniform Rational B-Splines

● Recall: [x, y, z, ω]H → [x / ω, y / ω, z / ω]
● Or: [x, y, z,1] → [xω, yω, zω, ω]H

● The control point
Pi=(xi, yi, zi)

becomes the homogeneous control point
PiH =(xiωi, yiωi, ziωi)

● A NURBS in homogeneous coordinates is:

Non-Uniform Rational B-Splines
● To convert from homogeneous coords to normal

coordinates:

Non-Uniform Rational B-Splines
● A piecewise rational curve is thus defined by:

with supporting rational basis functions:

This is essentially an average re-weighted by the ω’s.
● Such a curve can be made to pass arbitrarily far or near to

a control point by changing the corresponding weight.

Non-Uniform Rational B-Splines in action

Demo

http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html

Tensor product

● The tensor product of two vectors is a
matrix.

● Can also take the tensor of two polynomials.
● Each coefficient represents a piece of each of the two

original expressions, to the cumulative polynomial
represents both original polynomials completely.

NURBS patches
● The tensor product of the polynomial

coefficients of two NURBS splines is a
matrix of polynomial coefficients.
● If curve A has parameter k and n control

points and curve B has parameter j and m
control points then A⊗B is an (n)x(m)
matrix of polynomials of parameter max
(j,k).

● Multiply this matrix against an (n)x(m)
matrix of control points and sum them all up
and you’ve got a bivariate expression for
a rectangular surface patch, in 3D

● This approach generalizes to triangles and
arbitrary n-gons.

References

● Les Piegl and Wayne Tiller, The NURBS
Book, Springer (1997)

● Alan Watt, 3D Computer Graphics,
Addison Wesley (2000)

● G. Farin, J. Hoschek, M.-S. Kim, Handbook
of Computer Aided Geometric Design,
North-Holland (2002)

