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Bezier splines, B-Splines, and NURBS

Expensive products are sleek and smooth.
— Expensive products are C2 continuous.

Shiny, but reflections are warped Shiny, and reflections are perfect




History

e C(ontinuity (smooth curves) can
be essential to the perception of
quality.

e The automotive industry wanted
to design cars which were
aerodynamic, but also visibly of
high quality.

e Bezier (Renault) and de
Casteljau (Citroen) invented
Bezier curves in the 1960s. de
Boor (GM) generalized them to
B-splines.




History

The term spline comes from =

the shipbuilding industry: long, % v ‘T~7ﬁ’%
thin strips of wood or metal AT —
would be bent and held in T T

place by heavy ‘ducks’, lead
weights which acted as control
points of the curve.

Wooden splines can be
described by C -continuous
Hermite polynomlals which
interpolate n+1 control points.

Top: Fig 3, P.7, Bray and Spectre, Planking and Fastening, Wooden Boat Pub (1996)

Bottom: http://www.pranos.com/boatsofwood/lofting%20ducks/lofting ducks.htm



http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm

Beziers—a quick review

e A Bezier cubic 1s a function P(t) defined

by four control points:
e P and P, are the endpoints of the curve

° P2 and P3 define the other two corners of the P
bounding polygon. 3

e The curve fits entirely within the convex
hull of P ...P,.

e A degree-d Bezier 1s infinitely continuous
throughout its interior. However, when
joining two Beziers, careful placement of
the control points 1s required to ensure
continuity.

Cubic: P(f) = (I-t)’P, + 3((1-ty’P, + 3t (I-H)P, + £'P,



Beziers

Cubics are just one example of Bezier splines:

e Linear: P()=(-1)P,+1P,
e Quadratic: P() = (1-t°P, +24(1-H)P,+ £P,
e Cubic: P =1-0°P,+31(1-1)°P,+ 32(1-H)P, + P,

h “n choose i” = n!/il(n-i)!
General: /

P(t) = En: <n> (1—t)"""t'P;, 0<t<1



Beziers

® You can describe Beziers as nested linear interpolations.

e The linear Bezier is a linear interpolation between two points:

P(t)=(1-1) (P) + (1) (P))
e The quadratic Bezier is a linear interpolation between two lines:

P(t) = (1-t) (I-)P +tP,) + (¢) (I-)P,+tP))
e The cubic is a linear interpolation between linear interpolations between
linear interpolations... etc.
e Another way to see Beziers is as a weighted average
between the control points.

(1-H)P l+zP ~

P



Bernstein polynomials

\_Y_}

P(t) = (I-ty’P, + \3t(1-t)2}P2 + \3t2(]-t)}P3 + PP,

/

e The four control functions are the four Bernstein

polynomials for n=3. .
* General form: b, ,,(t) = £0(1 — )"
' (%
 Bernstein polynomials in 0 <7< 1 always sum to 1:

n

S (3)ra-orr=ra-or =

v=1




Joining Bezier splines

e To join two Bezier splines with CO
continuity, set P =0 .

e To join two Bezier splines with C1
continuity, require CO and make the tangent
vectors equal: set P =Q and P -P =0 -0 .

Q2
Ql/

P4

/L



What if we want to chain Beziers together?

Q, Q, o
We can parameterize this chain
\Q over ¢ by saying that instead of
4 going from O to 1, # moves
/ smoothly through the intervals
P R, [0,1,2,3]
Co;salgsrcigggllnpggrfgh?es with The curve C(¢) would be:
— (P P.P.P C)=P(t)+ (0<t<1)?1:0)+
Q {Qy Ql, Qz, Q) Q(t-7)+ (1=t<2)?1:0) +
R={R,R,R,, R3} R(t-2) + (2 <t<3)? 1:0)

...with CI continuity...
P3=Q_, P -P.=Q - ,
Q3:%z)» sz_é Sﬁlel [0,1,2,3] is a type of knot vector.
’ 0, 1, 2, and 3 are the knots.




NURBS

e NURBS (“Non-Uniform Rational B-

Splines”) are a generalization of Beziers.

e NU: Non-Uniform. The knots in the knot vector
are not required to be uniformly spaced.

e R: Rational. The spline may be defined by
rational polynomials (homogeneous coordinates.)

e BS: B-Spline. A generalization of Bezier splines
with controllable degree.



B-Splines

e A Bezier cubic 1s a polynomial of degree three: it
must have four control points, it must begin at
the first and end at the fourth, and 1t assumes that
all four control points are equally important.

® B-spline curves are a piecewise parameterization
of a series of splines, that supports an arbitrary
number of control points and lets you specify the
degree of the polynomial which interpolates
them.



B-Splines

We’ll build our definition of a B-spline from:

® d, the degree of the curve
e L =d+1, called the parameter of the curve
o (P, ..P }, alistofncontrol points
® [t,..1t. 1 aknotvector of (ktn) parameter values
® d = k-1 is the degree of the curve, so k is the number of control
points which influence a single interval.
e EXx: acubic (d=3) has four control points (k=4).
e There are k+n knots, and t<t., for all L.
e Each B-spline is C*? continuous: continuity is degree minus one,
so a k=3 curve has d=2 and is C1.



B-Splines

« The equation for a B-spline curve 1s

P(t) — ZNz,k(t)H; tmin S t < tmam
i=1
o N (?) 18 the basis function of control point P, for
parameter k. N, (¢) 1s detined recursively:

. _ 17 tzst<t'b—|—1
N, Zal(t) T {O, otherwise

t—1;

bivk—1 — i

bivk — 1

N; x(t) = N k—1(t)H

+1 k—1(7
bivk — Lit1 " ()



B-Splines

[ 2 [ t4| t5|




ENi,l(t)

_ 1, t;<t<t;jy1
— 10, otherwise

B-Splines
1 | 1 | | || | | [ I
0 11 1 T 1 T 2 1 5 13 1 113 14 T 17 15
N, () N, (0) N, () N, () N, ()
Y (
=00 | (Nu0=105c<1 [NZJ(t)=1, 1<r<2 }
?iéjg N, (0=1,2<1<3 [N4’1(t)=1,3§t<4 }
[ =30 N, (F1,4<t<5
t,=4.0 )
{ =50
-/

Knot vector = {0,1,2,3,4,5}, k=1 — d =0 (degree = zero)



N; 1(t) = ik—1(t) i+1,k—1(t)
. tivk—1 — 1; bitk — Li+1
B-Splines
N, (1) N 5,240 N 3.20) NyD
- )
t—0 2—1 t 0<t«1
A 1,2(?5) 1-0 1,1(t) + 9 _ lNz’l(t) _ {2 -t 1<t 2/
\ <
t—1 3—1 t—1 1<t<?2
Noo(t) = 5= Naa(t) + 35 Nan () = {3 —t 2<t<3
. /
> I
t—2 4—1 t—2 2<t<3
\N3,2(t) 7 2N3,1(t) + 1_ 3N4,1(t) - {4 —t 3<i< 4/
\ <
t—3 bh—t t—3 3<i<4
\ 1,2(1) . 3N4,1(t) 54 5,1(t) = {5 —t 4<t< 5/

Knot vector = {0,1,2,3,4,5}, k=2 — d =1 (degree = one)



itk — 1
Nig(t) = ik—1(t) i+1,k—1(t)
: bitk—1 — 1 bitk — tit1
B-Splines
N, 5@ N, 50 N; 50
( o ., 2/ 0<t<1
Nialt) = 5= Nialt) + 5= Naalt) = { 2 +3t=3/2 1<t <2
5 - - (3—1)2/2 2<t<3
4 )
P it ( (t—1)?/2  1<t<?2
Naa(t) = 3= Naalt) + 75 Naa(t) = { £ +5¢ —11/2 2<t <3
. - - (4—t/2 3<t<4
g s . ( (t—22/2 2<t<3 )
N3 3(t) = . 2N3,2(t) + - 3N4,2(t) = 124+ Tt—23/2 3<i<4
L | (5—1)%/2 45t<5/

Knot vector = {0,1,2,3,4,5}, k=3 — d =2 (degree = two)



Basis functions really sum to one (k=2)

N, (1)
V4 -_1.2 J,4

1, / \\

dos / g )
The sum of
the four basis

106 functions is
fully defined

104 (sums to one)
between

Lo t, (tf1 .0) and
t. (t=4.0).

® 05 1 1.5 2 2.5 3 3.5 4 4.5

1-0.2




Basis functions really sum to one (k=3)

—

The sum of
the three

functions is
fully defined

(sums to one)
between
t, (t=2.0) and

t, (t=3.0).

J

St
[, =

4.5




B-Splines

3 3 o
2.5 2.5
2 2 e
1.5 1.5
1 @ 1 o 4’/.
0.5 0.5
0.5 1 15 2 25 3 0.5 1 15 2 2.5 3
At k=2 the function is piecewise At k=3 the function is piecewise
linear, depends on P ,P,,P,,P ,andis  quadratic, depends on P ,P, P, and is
fully defined on [z, ¢,). fully defined on [7,, ¢)).

Each parameter-k basis function depends on k+1/ knot values; N, depends on ¢,

through ¢, inclusive. So six knots — five discontinuous functions — four piecewise
linear interpolations — three quadratics, interpolating three control points. n=3

control points, d=2 degree, k=3 parameter, n+k=6 knots.

Knot vector = {0,1,2,3,4,5}



Non-Uniform B-Splines

The knot vector {0,1,2,3,4,5} 1s uniform:
I vtz"

Varying the size of an interval changes the parametric-

space distribution of the weights assigned to the control

functions.

Repeating a knot value reduces the continuity of the

curve in the affected span by one degree.

Repeating a knot & times will lead to a control function

being influenced only by that knot value; the spline will

pass through the corresponding control point with CO

continuity.



Open vs Closed

e A knot vector which repeats its first and last knot
values k times 1s called open, otherwise closed.

e Repeating the knots k& times 1s the only way to
force the curve to pass through the first or last
control point.

e Without this, the functions N, and N , which
weight P, and P would still lée rampmg up’
and not yet equal to one at the first and last 7.



Open vs Closed

e Two examples you may recognize:
e /=3, n=3 control points, knots={0,0,0,1,1,1}
e /=4, n=4 control points, knots={0,0,0,0,1,1,1,1}

Weights Spline Weights Spline

Control functions Control functions m
\ °
\ A Y :
} K 5 k 3



http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html

Non-Uniform Rational B-Splines

e Repeating knot values 1s a clumsy way to
control the curve’s proximity to the control

point.

e We want to be able to slide the curve nearer or
farther without losing continuity or introducing
new control points.

e The solution: homogeneous coordinates.

® Associate a “‘weight” with each control point: ..



Non-Uniform Rational B-Splines

e Recall: [x, y, z, w], — [x /w,y/ o, z/ 0]
o Or:[x,y zl1] = [xow, yo, zu, o]
e The control point
P=(x, ¥, 2)
becomes the homogeneous control point
Py =x0, y0,z0)
e A NURBS in homogeneous coordinates 1s:

PH(t) — Z Ni,k(t)PiH; tmin S t < tmax
=1

H



Non-Uniform Rational B-Splines

e To convert from homogeneous coords to normal
coordinates:

z,(t)
Yy (L)

2y (t)

w(t)

/x(t) =x,, (t)/ o(t) h
y(@t) =y, )/ o)
\Z(t) =z, (t)/ o(t) )




Non-Uniform Rational B-Splines

e A piecewise rational curve is thus defined by:

n
P(t) — Z Rz,k(t)f)z) tmint < tmam
witn supf)f)hmg rarionat basis JUNCIIons:
wz-N g, k(t)
This 1s essentially an average re-weighted by the ’s.

e Such a curve can be made to pass arbitrarily far or near to
a control point by changing the corresponding weight.




Non-Uniform Rational B-Splines in action

Weights Spline

/o '

Control functions

k

1]

knots [0.1.2.3.4.5.6.7.8.9.10

weights [1,1,1,1,1.1.1.1

Update

Demo >/


http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html

Tensor product

e The tensor product of two vectors 1s a

matrix. - - r ,1 r -
a d ad ae af

b|®|e|=|bd be bf
c fl| |ed ce cf

e (an also take the tensor of two polynomaials.
e FEach coefficient represents a piece of each of the two
original expressions, to the cumulative polynomial
represents both original polynomials completely.




NURBS patches

e The tensor product of the polynomial &
coefficients of two NURBS splines is a

matrix of polynomial coefficients.
® [f curve A has parameter k£ and n control
points and curve B has parameter j and m
control points then A®B is an (n)X(m)
matrix of polynomials of parameter max
(.k).

e Multiply this matrix against an (n)X(m)
matrix of control points and sum them all up
and you’ve got a bivariate expression for
a rectangular surface patch, in 3D

e This approach generalizes to triangles and
arbitrary n-gons.
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